Interactions with successional stage and nutrient status determines the life-form-specific effects of increased soil temperature on boreal forest floor vegetation

نویسندگان

  • Per-Ola Hedwall
  • Jerry Skoglund
  • Sune Linder
چکیده

The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial heterogeneity of understory vegetation and soil in an Alaskan upland boreal forest fire chronosequence

In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15 cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between und...

متن کامل

Buried organic horizons represent amino acid reservoirs in boreal forest soils

We examined the composition and concentration of amino acids by soil horizon and depth on the Tanana River floodplain in interior Alaska. Soils from mid-successional stages of balsam poplar and white spruce were separated into successive forest floor (Oe/Oa), buried organic horizons (BOHs), and mineral horizons; and water-extractable amino acid composition and concentration were determined by H...

متن کامل

Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.

Leaf litter represents an important link between tree community composition, forest productivity and biomass, and ecosystem processes. In forests, the spatial distribution of trees and species-specific differences in leaf litter production and quality are likely to cause spatial heterogeneity in nutrient returns to the forest floor and, therefore, in the redistribution of soil nutrients. Using ...

متن کامل

Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation

A common hypothesis for northern ecosystems is that low soil temperatures inhibit plant productivity. To address this hypothesis, we reviewed how separate components of ecosystem carbon (C) cycling varied along a soil temperature gradient for nine welldrained, relatively productive boreal black spruce (Picea mariana Mill. [B.S.P.]) forests in Alaska, USA, and Saskatchewan and Manitoba, Canada. ...

متن کامل

Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation

A common hypothesis for northern ecosystems is that low soil temperatures inhibit plant productivity. To address this hypothesis, we reviewed how separate components of ecosystem carbon (C) cycling varied along a soil temperature gradient for nine welldrained, relatively productive boreal black spruce (Picea marianaMill. [B.S.P.]) forests in Alaska, USA, and Saskatchewan and Manitoba, Canada. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015